Phase transition of two-dimensional Ising model on random point patterns.

نویسندگان

  • Xiujun Fu
  • Kwok Yip Szeto
  • Wing Keung Cheung
چکیده

The phase transition of two-dimensional Ising model on random point patterns is investigated using Monte Carlo simulation and the critical temperature is calculated using the Bethe approximation. We find a linear relation between the critical temperature and the structural characteristics of the random point pattern, as described by Aboav's parameter. Numerical results and analytical calculation both yield this linear relation with a similar slope, though the intercept is different due to the Bethe approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

Critical Behavior and Griffiths-McCoy Singularities in the Two-Dimensional Random Quantum Ising Ferromagnet

We study the quantum phase transition in the two-dimensional random Ising model in a transverse field by Monte Carlo simulations. We find results similar to those known analytically in one dimension. At the critical point the dynamical exponent is infinite and the typical correlation function decays with a stretched exponential dependence on distance. Away from the critical point there are Grif...

متن کامل

Numerical Study of Competing Spin-Glass and Ferromagnetic Order

Two and three dimensional random Ising models with a Gaussian distribution of couplings with variance J and non-vanishing mean value J0 are studied using the zero-temperature domain-wall renormalization group (DWRG). The DWRG trajectories in the (J0, J) plane after rescaling can be collapsed on two curves: one for J0/J > rc and other for J0/J < rc. In the first case the DWRG flows are toward th...

متن کامل

Real-Space Renormalization Group Study of the Two-dimensional Blume-Capel Model with a Random Crystal Field

The phase-diagram of the two-dimensional Blume-Capel model with a random crystal field is investigated within the framework of a real-space renormalization group approximation. Our results suggest that, for any amount of randomness, the model exhibits a line of Ising-like continuous transitions, as in the pure model, but no first-order transition. At zero temperature the transition is also cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004